Innovative, Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept

Nguyen Q. Minh

Center for Energy Research University of California, San Diego La Jolla, California

18th Annual Solid Oxide Fuel Cell Project Review Meeting Pittsburgh, PA June 12-14, 2017

Innovative, Versatile and Cost-Effective SOFC Stack Concept Project

- <u>Project</u>: Innovative, Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept (DE-FE0026211)
- <u>DOE/NETL Project Manager</u>: Dr. Patcharin Burke
- <u>Project Team</u>:
 - UCSD
 - Center for Energy Research: Dr. Nguyen Minh (PI), Dr. Yoon Ho Lee (Postdoctoral scholar), Dr. Eduard Ron (Postdoctoral scholar)
 - Department of Electrical Engineering and Center for Memory and Recording Research: Dr. Eric Fullerton, Haowen Ren (graduate student)
 - Department of NanoEngineering: Dr. Shirley Meng, Erik Wu (graduate student)
 - FuelCell Energy
 - Dr. Hossein Ghezel-Ayagh and Dr. Alireza Torabi

Project Objective and R&D Work

 <u>Objective</u>: Develop and evaluate a versatile stack configuration based on a prime-surface interconnect design for a broad range of power generation applications

 <u>R&D Work</u>: Involve R&D activities to demonstrate fabricability, operability and affordability of the stack design

STACK DESIGN CONCEPT

Stack Design

Incorporating Conventional Cells

Features of Stack Concept

- Reduced weight and volume
- Flexibility in gas flow configuration
- Reduced stacking performance losses
- Improved sealing
- Versatility in incorporation of different types of cell construction

Prime-Surface Interconnect Design

Cross Section

Stack Design Incorporating Sintered Cells

Not in Scale

Stack Design Cross Flow Gas Manifolding

Not in Scale

Stack Design

Incorporating Metal-Supported Cells

Project Technical Activities

- Prime surface interconnect design and fabrication development
- Metal-supported cell structure development
- Stack development
- Stack operation demonstration
- Stack cost assessment

PRIME SURFACE INTERCONNECT DEVELOPMENT

Preliminary Interconnect Design Assessment

- Flow distribution
- Mechanical loading
- Current collection
- Formability

Prime Surface Interconnect Design

Parameter	Value
Interconnect height	2.5mm
Interconnect sheet	0.3mm
thickness	
Cone angle	60°
Diameter of the cone	4mm
Mass of one sample	10.56 grams
(60 mm x 60 mm)	

Gas Flow Distribution Modeling

• Approach: FLUENT software, LES & URANS turbulence models

• Inlet boundary conditions:

Parameter	Value
Inlet velocity	2 m/s
Temperature of the flow	800°C
Interconnect design	Egg carton shape
Fuel type	Hydrogen

Gas Flow Patterns

Plane near interconnect/cell interface

• Flow is uniform with areas of boundary layer detachment in the wakes of the hills

Plane in interconnect center

- Flow exhibits areas of acceleration
- Potentially that can be used for improved diffusion

Mechanical Loading Modeling

- Approach: ANSYS Mechanical software, modeling of loading within a stack
- Parameters:

Parameter	Value
Temperature of the cell	800°C
Interconnect design	Egg carton shape
Cell type	Conventional anode-supported
Number of cells in the stack	100
Interconnect material	Ferritic stainless steel

Stress Analysis

 The appeared stresses of 3.65MPa at the bottom cell are much lower than the yield strength of ferritic stainless steel (240MPa)

Current Collection Modeling

- Approach: Analytical calculations
- Parameters:

Parameter	Value
Interconnect height	2.5mm
Interconnect sheet	0.3mm
thickness	
Cone angle	60°
Diameter of the cone	4mm

Current Collection Losses

Egg-carton interconnect

- Evaluation was performed for a simplified interconnect design and egg carton shape
- Egg-carton shape accounts for insignificant increase in the area-specific resistance as compared to that of a cell
- Negligible current density losses with egg carton shaped interconnects

Interconnect Formability

Engineering drawing

- Engineering drawing produced
- Hydroforming method of production chosen
- The interconnect manufacturer Borit[™] contacted
- Positive feedback on its manufacturability received

Prime Surface Interconnect Design

Preliminary Assessment Summary

- No flow maldistribution
- Stress estimated at interconnects well below yield strength of stainless steels
- Interconnect current collection without significant losses
- Formability possible with hydroforming

METAL-SUPPORTED CELL STRUCTURE FABRICATION

Sputtering Process

Sputtering for SOFC Cell Fabrication

• Fabrication of dense and porous layers

Nano-scale Dense YSZ layer

Scalability

Goldstone Vacuum Sputter System http://www.goldstone-group.com/

 Potential cost effectiveness

Weimar et al, PNNL Report PNNL-22732, 2013

Fabrication of Dense YSZ Layers

Structure & Condition

Fabrication of Porous YSZ Structures

Fabrication of Porous Ni-YSZ Layers

Fabrication of Porous LSC-YSZ Layers

EDX Mapping of Deposited LSC- YSZ Layer

Fabrication of SOFC Cell

Fabrication of SOFC Cell

Metal-Supported Cell Development

Preliminary Fabrication Results Summary

- Fabrication feasibility demonstration by sputtering
 - Dense YSZ electrolyte layers
 - Porous YSZ structures
 - Porous Ni-YSZ layers
 - Porous LSC-YSZ layers
 - Single cell structures
- Uniform layer thickness and excellent interfaces between layers
- Electrode porosity improvements required

Near-Term Future Work

- Prime surface interconnect development
 - Initiate and evaluate hydroforming of egg carton shaped interconnect and characterize fabricated samples
 - Modify and optimize design
- Metal-supported cell structure development
 - Modify and optimize sputtering process and characterize fabricated samples
 - Fabricate and characterize single cells
 - Fabricate cell components and single cells on metal supports
- Stack development
 - Initiate assembling of stacks incorporating prime surface interconnects and sintered cells

Acknowledgments

- DOE/NETL SOFC project management, especially Dr. Patcharin Burke
- UCSD/FCE SOFC project team